A general binding mechanism for all human sulfatases by the formylglycine-generating enzyme.
نویسندگان
چکیده
The formylglycine (FGly)-generating enzyme (FGE) uses molecular oxygen to oxidize a conserved cysteine residue in all eukaryotic sulfatases to the catalytically active FGly. Sulfatases degrade and remodel sulfate esters, and inactivity of FGE results in multiple sulfatase deficiency, a fatal disease. The previously determined FGE crystal structure revealed two crucial cysteine residues in the active site, one of which was thought to be implicated in substrate binding. The other cysteine residue partakes in a novel oxygenase mechanism that does not rely on any cofactors. Here, we present crystal structures of the individual FGE cysteine mutants and employ chemical probing of wild-type FGE, which defined the cysteines to differ strongly in their reactivity. This striking difference in reactivity is explained by the distinct roles of these cysteine residues in the catalytic mechanism. Hitherto, an enzyme-substrate complex as an essential cornerstone for the structural evaluation of the FGly formation mechanism has remained elusive. We also present two FGE-substrate complexes with pentamer and heptamer peptides that mimic sulfatases. The peptides isolate a small cavity that is a likely binding site for molecular oxygen and could host reactive oxygen intermediates during cysteine oxidation. Importantly, these FGE-peptide complexes directly unveil the molecular bases of FGE substrate binding and specificity. Because of the conserved nature of FGE sequences in other organisms, this binding mechanism is of general validity. Furthermore, several disease-causing mutations in both FGE and sulfatases are explained by this binding mechanism.
منابع مشابه
Molecular Basis for Multiple Sulfatase Deficiency and Mechanism for Formylglycine Generation of the Human Formylglycine-Generating Enzyme
Sulfatases are enzymes essential for degradation and remodeling of sulfate esters. Formylglycine (FGly), the key catalytic residue in the active site, is unique to sulfatases. In higher eukaryotes, FGly is generated from a cysteine precursor by the FGly-generating enzyme (FGE). Inactivity of FGE results in multiple sulfatase deficiency (MSD), a fatal autosomal recessive syndrome. Based on the c...
متن کاملCrystal structure of human pFGE, the paralog of the Calpha-formylglycine-generating enzyme.
In eukaryotes, sulfate esters are degraded by sulfatases, which possess a unique Calpha-formylglycine residue in their active site. The defect in post-translational formation of the Calpha-formylglycine residue causes a severe lysosomal storage disorder in humans. Recently, FGE (formylglycine-generating enzyme) has been identified as the protein required for this specific modification. Using se...
متن کاملCharacterization of pFGE , the Paralog of the C - Formylglycine - generating Enzyme
pFGE is the paralog of the formylglycine-generating enzyme (FGE), which catalyzes the oxidation of a specific cysteine to C -formylglycine, the catalytic residue in the active site of sulfatases. The enzymatic activity of sulfatases depends on this posttranslational modification, and the genetic defect of FGE causes multiple sulfatase deficiency. The structural and functional properties of pFGE...
متن کاملFunction and Structure of a Prokaryotic Formylglycine-generating Enzyme*S⃞
Type I sulfatases require an unusual co- or post-translational modification for their activity in hydrolyzing sulfate esters. In eukaryotic sulfatases, an active site cysteine residue is oxidized to the aldehyde-containing C(alpha)-formylglycine residue by the formylglycine-generating enzyme (FGE). The machinery responsible for sulfatase activation is poorly understood in prokaryotes. Here we d...
متن کاملSulfatases, trapping of the sulfated enzyme intermediate by substituting the active site formylglycine.
Sulfatases contain an active site formylglycine residue that is generated by post-translational modification. Crystal structures of two lysosomal sulfatases revealed significant similarity to the catalytic site of alkaline phosphatase containing a serine at the position of formylglycine. To elucidate the catalytic mechanism of sulfate ester hydrolysis, the formylglycine of arylsulfatases A and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 1 شماره
صفحات -
تاریخ انتشار 2006